Sabtu, 09 Maret 2013

Baris dan Deret Geometri



  1. BARISAN GEOMETRI

    U1, U2, U3, ......., Un-1, Un disebut barisan geometri, jika

    U1/U2 = U3/U2 = .... = Un / Un-1 = konstanta

    Konstanta ini disebut pembanding / rasio (r)

    Rasio r = Un / Un-1

    Suku ke-n barisan geometri

    a, ar, ar² , .......arn-1
    U1, U2, U3,......,Un

    Suku ke n Un = arn-1fungsi eksponen (dalam n)

  2. DERET GEOMETRI

    a + ar² + ....... + arn-1 disebut deret geometri
    a = suku awal
    r = rasio
    n = banyak suku

    Jumlah n suku

    Sn = a(rn-1)/r-1 , jika r>1
          = a(1-rn)/1-r , jika r<1     Fungsi eksponen (dalam n)


    Keterangan:
    1. Rasio antara dua suku yang berurutan adalah tetap
    2. Barisan geometri akan naik, jika untuk setiap n berlaku
      Un > Un-1
    3. Barisan geometri akan turun, jika untuk setiap n berlaku
      Un < Un-1

      Bergantian naik turun, jika r < 0
    4. Berlaku hubungan Un = Sn - Sn-1
    5. Jika banyaknya suku ganjil, maka suku tengah
                _______      __________
      Ut =  U1xUn    = U2 X Un-1      dst.   
    6. Jika tiga bilangan membentuk suatu barisan geometri, maka untuk memudahkan perhitungan, misalkan bilangan-bilangan itu adalah a/r, a, ar

  3. DERET GEOMETRI TAK BERHINGGA

    Deret Geometri tak berhingga adalah penjumlahan dari

    U1 + U2 + U3 + ..............................


     Un = a + ar + ar² .........................
    n=1

    dimana n  dan -1 < r < 1 sehingga rn  0

    Dengan menggunakan rumus jumlah deret geometri didapat :

    Jumlah tak berhingga    S = a/(1-r)

    Deret geometri tak berhingga akan konvergen (mempunyai jumlah) untuk -1 < r < 1

    Catatan:


    a + ar + ar2 + ar3 + ar4 + .................

    Jumlah suku-suku pada kedudukan ganjil

    a+ar2 +ar4+ .......                     Sganjil = a / (1-r²)

    Jumlah suku-suku pada kedudukan genap

    a + ar3 + ar5 + ......                  Sgenap = ar / 1 -r²

    Didapat hubungan : Sgenap / Sganjil = r

Contoh 1.7
Carilah jumlah dari deret geometri 2 + 6 + 18 + … + 4374

Penyelesaian:
Barisan geometri 2 + 6 + 18 + … + 4374
a = 2 dan r = 3
Un = arn-1
2 . 3n-1 = 4374
3n-1 = 2187
3n-1 = 37
n – 1 = 7
n    = 8
S8   = 6560
Jadi, jumlah 8 suku pertama deret geometri adalah 6560. 

Tidak ada komentar:

Posting Komentar